Oxford Cambridge and RSA
day June 20XX - Morning/Afternoon
A Level Chemistry B (Salters)
H433/01 Fundamentals of chemistry

SAMPLE MARK SCHEME

MAXIMUM MARK 110

MARKING INSTRUCTIONS

PREPARATION FOR MARKING

SCORIS

1. Make sure that you have accessed and completed the relevant training packages for on-screen marking: scoris assessor Online Training; OCR Essential Guide to Marking.
2. Make sure that you have read and understood the mark scheme and the question paper for this unit. These are posted on the RM Cambridge Assessment Support Portal http://www.rm.com/support/ca
3. Log-in to scoris and mark the required number of practice responses ("scripts") and the required number of standardisation responses.

YOU MUST MARK 10 PRACTICE AND 10 STANDARDISATION RESPONSES BEFORE YOU CAN BE APPROVED TO MARK LIVE SCRIPTS.

MARKING

1. Mark strictly to the mark scheme.
2. Marks awarded must relate directly to the marking criteria.
3. The schedule of dates is very important. It is essential that you meet the scoris 50% and 100% (traditional 50% Batch 1 and 100\% Batch 2) deadlines. If you experience problems, you must contact your Team Leader (Supervisor) without delay.
4. If you are in any doubt about applying the mark scheme, consult your Team Leader by telephone, email or via the scoris messaging system.
5. Work crossed out:
a. where a candidate crosses out an answer and provides an alternative response, the crossed out response is not marked and gains no marks
b. if a candidate crosses out an answer to a whole question and makes no second attempt, and if the inclusion of the answer does not cause a rubric infringement, the assessor should attempt to mark the crossed out answer and award marks appropriately.
6. Always check the pages (and additional objects if present) at the end of the response in case any answers have been continued there. If the candidate has continued an answer there then add a tick to confirm that the work has been seen.
7. There is a NR (No Response) option. Award NR (No Response)

- \quad if there is nothing written at all in the answer space
- \quad OR if there is a comment which does not in any way relate to the question (e.g. 'can't do', 'don't know')
- \quad OR if there is a mark (e.g. a dash, a question mark) which isn't an attempt at the question.

Note: Award 0 marks - for an attempt that earns no credit (including copying out the question).
8. The scoris comments box is used by your Team Leader to explain the marking of the practice responses. Please refer to these comments when checking your practice responses. Do not use the comments box for any other reason.

If you have any questions or comments for your Team Leader, use the phone, the scoris messaging system, or email.
9. Assistant Examiners will send a brief report on the performance of candidates to their Team Leader (Supervisor) via email by the end of the marking period. The report should contain notes on particular strengths displayed as well as common errors or weaknesses. Constructive criticism of the question paper/mark scheme is also appreciated.
10. For answers marked by levels of response:

Read through the whole answer from start to finish, concentrating on features that make it a stronger or weaker answer using the indicative scientific content as guidance. The indicative scientific content indicates the expected parameters for candidates' answers, but be prepared to recognise and credit unexpected approaches where they show relevance.

Using a 'best-fit' approach based on the science content of the answer, first decide which set of level descriptors, Level 1, Level 2 or Level 3, best describes the overall quality of the answer using the guidelines described in the level descriptors in the mark scheme.

Once the level is located, award the higher or lower mark.
The higher mark should be awarded where the level descriptor has been evidenced and all aspects of the communication statement (in italics) have been met.

The lower mark should be awarded where the level descriptor has been evidenced but aspects of the communication statement (in italics) are missing.

In summary:

- The science content determines the level.
- The communication statement determines the mark within a level.

Level of response questions on this paper are 32(b) and 34(b)
11. Annotations

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Orternative wording
ORA	Marking point
\checkmark	

12. Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

SECTION A

Question	Answer	Marks	Guidance
1	D	1	
2	D	1	
3	D	1	
4	B	1	
5	A	1	
6	A	1	
7	D	1	
8	B	1	
9	B	1	
10	C	1	
11	C	1	
12	B	1	
13	D	1	
14	A	1	
15	B	1	
16	C	1	
17	A	1	
18	B	1	
19	B	1	
20	A	1	

Question	Answer	Marks	Guidance
21	B	1	
22	B	1	
23	D	1	
24	C	1	
25	A	1	
26	A	1	
27	B	1	
28	B	1	
29	A	1	
30	D	1	
		Total	30

SECTION B

Question		Answer	Marks	Guidance
	(iii)	Use a more dilute $\mathrm{AsO}_{3}{ }^{3-}$ solution to increase volume of titre / reduce \% error in titre OR Use more ceria sample to increase volume of titre / reduce \% error in titre	1	
	(iv)	FIRST CHECK ANSWER ON ANSWER LINE answer $=1.7 \times 10^{22}$ atoms of oxygen award 2 marks $\begin{aligned} & n\left(\mathrm{CeO}_{2}\right)=2.5 / 172.1=0.01453(\mathrm{~mol}) \\ & n(\mathrm{O})=0.01453 \times 2=0.02905(\mathrm{~mol}) \end{aligned}$ $0.02905 \times 6.02 \times 10^{23}=1.7 \times 10^{22}$ atoms of oxygen	2	ALLOW ECF from first marking point ALLOW 2 or more sig figs
	(v)	Reactants adsorbed onto surface of catalyst and form bonds to surface (AW) Bonds within reactants weaken and break \checkmark New bonds form (AW) Products formed desorb/leave from catalyst (AW)	4	
		Total	19	

Question		Answer	Marks	Guidance
$\mathbf{3 2}$	(a)	Two marking points from the following: - Large amounts of arable land are required to produce the crops required to obtain large amounts ethanol - (Environmental problem caused by) disposal of fermentation waste - Current car engines need to be modified to use high concentrations of ethanol	$\mathbf{2}$	
\checkmark		ALLOW ethanol has a lower enthalpy change of combustion than petrol		

Quest	Answer	Marks	Guidance
(b)*	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Analyses information AND spectral data to provide evidence to support the correct and full identification of all compounds A, B, C and D. Evidence from reactions of A AND no reaction of B with Tollens' reagent or NaOH AND MS spectrum AND ${ }^{13} \mathrm{C}$ NMR spectrum. The information and evidence used is relevant and fully supports the identification. The answer is clear and logically structured. Level 2 (3-4 marks) Analyses information AND data to provide evidence to support the partial identification of compound \mathbf{A} as a secondary alcohol, \mathbf{B} as a ketone and \mathbf{C} and \mathbf{D} as alkenes. Evidence from reactions of \mathbf{A} AND no reaction of \mathbf{B} with Tollens' reagent or NaOH AND EITHER MS spectrum OR ${ }^{13} \mathrm{C}$ NMR spectrum The information and evidence used is in the most-part relevant and supports the identification. The answer is presented with some structure. Level 1 (1-2 marks) Analyses information OR data to provide evidence allowing partial identification of the compounds \mathbf{A} AND B OR C AND D using reactions of \mathbf{A} OR no reaction of \mathbf{B} with Tollens' reagent or NaOH OR using information from MS Spectrum $\mathbf{O R}{ }^{13} \mathrm{C}$ NMR spectrum	6	Indicative scientific points may include: Full identification Compound \mathbf{A} is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ Compound B is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3}$ Compounds C \& D are $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ and $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}$ Evidence from spectral data MS Spectrum: - $M_{r}\left(\mathrm{C}_{x} \mathrm{H}_{y} \mathrm{O}\right)=74$ $M_{\mathrm{r}}\left(\mathrm{C}_{x} H_{y}\right) 74-16=58$ so $x=4$ and $y=10$. ${ }^{13} \mathrm{C}$ NMR: 2 from - 4 carbon environments - no $\mathrm{C}=\mathrm{O}$ or $\mathrm{C}=\mathrm{C}$ - $\mathrm{C}-\mathrm{O}$ (and $\mathrm{C}-\mathrm{C}$) present. Evidence from the Reactions: - A is alcohol from formula plus $\mathrm{H}^{+} / \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ reaction - Heating \mathbf{A} with $\mathrm{Al}_{2} \mathrm{O}_{3}$ results in elimination of water from \mathbf{A} forms 2 different alkenes, \mathbf{C} and \mathbf{D} - Thus \mathbf{A} secondary and \mathbf{B} a ketone. - A reacts with $\mathrm{H}^{+} / \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ when heated $\rightarrow \mathbf{B}$ is aldehyde, ketone or carboxylic acid - No reaction with Tollens' $\rightarrow \mathbf{B}$ is NOT an aldehyde - No reaction with $\mathrm{NaOH} \rightarrow \mathbf{B}$ is NOT a carboxylic acid - Conclusion: B is a ketone AND A a secondary alcohol.

Question	Answer	Marks	Guidance
	The information and evidence is used to make a partial identification of A AND B OR C and D. The evidence chosen does not fully support the identification and is not presented in a logical order. 0 marks No response or no response worthy of credit.		For Level 1: partial identification of \mathbf{A} required. May be supplemented by partial identification of B OR partial identification of \mathbf{C} and \mathbf{D}.
(c)	Substrate/reactant has specific shape \checkmark Fits active site in enzyme \checkmark	2	
(d)	$n\left(\mathrm{O}_{2}\right)=25 \times 0.21 / 24.0=0.219 \mathrm{~mol}$ M_{r} of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=46.0$ $n\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)=4.0 / 46.0=0.087 \mathrm{~mol}$ Recognition of ratio $\mathrm{O}_{2} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}: 0.219 / 0.087=2.5 \checkmark$ This is smaller than the required ratio of 3 (from $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$), so the ethanol is not completely burned.	3	ALLOW ECF from first marking point.
	\square Total	13	

Question			Answer	Marks	Guidance
33	(a)		 Any of the ester groups circled correctly \checkmark	1	IGNORE circled adjacent carbons
-	(b)	(i)	$K_{\text {sp }}=\left[\mathrm{Na}^{+}(\mathrm{aq})\right] \times\left[\mathrm{L}^{-}(\mathrm{aq})\right]^{\checkmark}$	1	State symbols required ALLOW $K_{\text {sp }}=\left[\mathrm{Na}^{+}(\mathrm{aq})\right]\left[\mathrm{L}^{-}(\mathrm{aq})\right]$
		(ii)	[Na^{+}] increases but $K_{\text {sp }}$ remains constant \checkmark so NaL precipitates to make $\left[L^{-}\right]$smaller / to move equilibrium left \checkmark		
		(iii)	FIRST CHECK ANSWER ON ANSWER LINE minimum mass of $\mathrm{NaCl}=34.2 \mathrm{~g}$ award 4 marks Solubility of $\mathbf{F}=24.0 / 222=0.108 \mathrm{~mol} \mathrm{dm}^{-3}$ $\begin{aligned} & K_{\text {sp }}=(\text { solubility })^{2}=0.0117 \\ & 0.0117=\left[\mathrm{Na}^{+}(\mathrm{aq})\right] \times 1.0 \times 10^{-2} \end{aligned}$ $[\mathrm{NaCl}]$ to exceed $K_{\text {sp }}=0.0117 / 1.0 \times 10^{-2}=1.17(\mathrm{~mol}$ $\left.\mathrm{dm}^{-3}\right)^{\text {l }}$ Min mass of NaCl to add to $500 \mathrm{~cm}^{3}$ to form ppt of $\mathbf{F}=$ $(1.17 / 2) \times 58.5=34.2 \mathrm{~g} \checkmark$ Assumption: volume of solution does not change when NaCl added \checkmark	5	IGNORE units

Questi	Answer	Marks	Guidance
(c)	FIRST CHECK ANSWER ON ANSWER LINE Answer $=0.043$ award 4 marks concentration of $\mathrm{H}_{2} \mathrm{O}=5.00-1.20=3.80\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark$ concentration of acid $\mathbf{H}=0.60\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ AND concentration of $\mathrm{CH}_{3} \mathrm{OH}=1.20\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark$ $\begin{aligned} & K_{\mathrm{c}}\left(=\frac{\left[\left(\mathrm{CH}_{2} \mathrm{COOH}_{2}\right]\left[\mathrm{CH}_{3} \mathrm{OH}\right]^{2}\right.}{\left[\left(\mathrm{CH}_{2} \mathrm{COOCH}_{3}\right)_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}\right)=\frac{0.6 \times 1.2^{2}}{1.4 \times 3.8^{2}} \\ & =0.043 \checkmark \text { (no units) } \end{aligned}$	4	ALLOW 2 or more sig figs
(d)	FIRST CHECK ANSWER ON ANSWER LINE Answer $=22.5 \mathrm{~g}$ award 4 marks $\begin{aligned} & {\left[\mathrm{H}^{+}\right]=10^{-4.8}=1.585 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}} \\ & K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right][\text {salt }]}{[\text { acid }]} \text { AND } \frac{[\text { salt }]}{[\text { acid }]}=\frac{K_{\mathrm{a}}}{\left[\mathrm{H}^{+}\right]} \\ & =\frac{1.74 \times 10^{-5}}{1.585 \times 10^{-5}}=1.0979 \end{aligned}$ Therefore amount of ethanoate required $=1.0979 \times n$ (ethanoic acid) $=1.0979 \times 0.250=0.274(\mathrm{~mol})$ $0.274 \times 82.0=22.5(\mathrm{~g})$	4	ALLOW ECF from first marking point ALLOW ECF from third marking point
	Total	17	

Question		Answer	Marks	Guidance
(f)		Stronger intermolecular bonds present in raspberry ketone (than in 4-phenylbutan-2-one) \checkmark due to hydrogen bonding \checkmark so more energy needed to separate molecules \checkmark	$\mathbf{3}$	ALLOW intermolecular forces
		Total	$\mathbf{1 7}$	

Question			Answer	Marks	Guidance
35	(a)		Al^{3+} since group 3, O^{2-} since Group 6; charges balance (in $\left.\mathrm{Al}_{2} \mathrm{O}_{3}\right)^{\checkmark}$	1	
-	(b)	(i)	$\mathrm{Al}{ }^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Al} \downarrow$	1	ALLOW 'e' without minus IGNORE state symbols
		(ii)	FIRST CHECK ANSWER ON ANSWER LINE Answer = 35000 OR 35280 award 3 marks $n\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)=100000 / 102 \text { OR } 980(\mathrm{~mol})$ half a mol CO_{2} for every mol $\mathrm{O} \checkmark$ (stated or shown in calc) $\text { volume } \mathrm{CO}_{2}=24 \times 980 \times 3 / 2$ $=35000 \text { OR } 35280 \checkmark$	3	ALLOW ECF from first marking point
	(c)	(i)	cathode: $2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}+2 \mathrm{OH}^{-} \checkmark$ anode: $2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}^{+}+\mathrm{O}_{2}+4 \mathrm{e}^{-} \checkmark$	2	ALLOW 'e' without minus IGNORE state symbols ALLOW multiples and halves ALLOW $2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}$ and $4 \mathrm{OH}^{-} \rightarrow \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{-}$
		(ii)	white ppt \checkmark after adding $\mathrm{Ba}^{2+} /$ solution of (named) barium salt OR (formation of) barium sulfate/ $\mathrm{BaSO}_{4} \checkmark$	2	Any named barium salt must be soluble

Question		Answer	Marks	Guidance
(d)	(i)	labelled metal rods in labelled solutions of corresponding ions \checkmark both ions $1.0 \mathrm{~mol} \mathrm{dm}^{-3} \checkmark$ wires, voltmeter and salt bridge \checkmark	3	ALLOW: - cell either way round - any unambiguous representation of the voltmeter - descriptions of solutions as, e.g., ' AgNO_{3} ' and ' $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ ' (but molarity must be correct, in next mark, for ,e.g., $\left.\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}\right)$. IGNORE temperature any other label on salt bridge
	(ii)	FIRST CHECK ANSWER ON ANSWER LINE Answer $=1.68 \mathrm{~V}$ award 2 marks $\begin{aligned} & \frac{R T}{n F} \ln 0.1=8.314 \times 298 \times(-2.3) / 3 \times 9.65 \times 10^{4} \\ & =-0.02(-0.0197)(\mathrm{V}) \checkmark \\ & E_{\text {cell }}=-1.66-0.02=1.68 \mathrm{~V} \checkmark \end{aligned}$	2	
		Total	14	

